Charles « Chuck » YEAGER – 65 years ago !

THE RIGHT STUFF  / L’ETOFFE des HEROS

Supersonic aircraft X-1 in flight
Photo: NASA

Captain Charles « Chuck » YEAGER broke the sound barrier with the help of his friend Jack RIDLEY on a 14th of October 1947 – He did it 61 years ago!

Brigadier General Charles Chuck Yeager next to his X-1 aircraft

(U. S. Air Force illustration/Mike Carabajal)

Supersonic aircraft X-1
Photo: NASA

Supersonic aircraft X-1 pre-flight inspection

Photo: U.S.Air Force Link

XLR-11 ROCKET POWERED AIRCRAFT

Birth of Manned Rocket Research Airplanes: 1946 to 1975

The first reliable, effective rocket engine that would provide boost for experimental research aircraft was produced by four members of the American Rocket Society (ARS) who combined forces to form Reaction Motors Incorporated (RMI) (Rockaway, New Jersey) for developing the Experimental Liquid Rocket (XLR-11) rocket motor. The XLR-11 engine had four separate rocket chambers. Each chamber provided 1500 lb of rated thrust and could be operated independently as a means of throttling thrust in quarters, up to 6000 pounds. The XLR-11 possessed remarkable longevity, powering an impressive fleet of rocket aircraft for more than a quarter of a century (1946 to 1975). This fleet of vehicles were the first rocket aircraft devoted solely to high performance experimental flight research. They were not constrained by military or commercial demands and ranged from being the first to break the sound barrier (XS-1), to the first to reach Mach 2.0 (D-558-II [fig. 5]), to the first to exceed the X-2 Mach 3.2 record (X-15 with two XLR-11 engines).

D-558-II airplane on Rogers lakebed

Figure 5. The D-558-II airplane on Rogers lakebed.

The X-1E – Early Development of Energy Management

Design efforts to extend aircraft performance produced increased wing loadings, W/S, and decreased lift-to-drag ratios, L/D. These design changes were beneficial in reducing drag to achieve supersonic and hypersonic speeds, but were also detrimental in that they reduced the area of the maneuvering footprint and presented difficulties in the approach and landing.

As L/D values decreased, the glide slope angle and the rate of descent increased, making it more difficult for pilots to estimate distances and times required for acceptable landings. The X-1E (fig. 6) was modified with a low-aspect-ratio wing having a thickness-to-chord ratio of four percent – the only aircraft of the X-1/D-558 series to have sufficiently low L/D values to require unique energy management techniques. This X-1E was the first to experiment with approach patterns designed to give
the pilot more time in the traffic pattern to manage energy.

The landing pattern was approached in a conventional manner except that altitudes and speeds were somewhat higher than for
powered aircraft. The initial reference point was established at 12,000 ft (mean sea level) on a downwind heading (180 deg remaining to turn). The downwind leg was offset some four miles from the centerline of the landing runway. On downwind, abeam the touchdown point, landing gear and partial flaps were deployed at a speed of 240 knots. Full flaps were usually deployed on the final approach. At the initial reference point the pilot had almost three minutes until touchdown – additional time for handling increased speeds and sink rates.7,8

X-1 supersonic aircraft on Lakebed

Figure 6. The X-1E airplane on Rogers lakebed.

X-1E supersonic aircraft under B-29 Mothership

Secret declassified USAF pilot Charles Chuck Yeager after breaking the sound barrier on X-1

Report from www.archives.gov

X-1 supersonic aircraft instrument panel

(Text from the NASA at: http://www.nasa.gov/centers/dryden/home/index.html)

Facebooktwitterpinterestlinkedinmail

First RAF pilot to fly F-22 Raptor

(source: http://www.af.mil)

A former RAF Leeming F3 pilot has spoken for the first time since arriving in the United Kingdom at the controls of one of the United State’s 5th generation fighters – the F-22 Raptor.

Speaking after a 7 ½ flight which involved eleven refuelling transfers, Flt. Lt. Dan Robinson spoke of his fortune at being the first RAF pilot to fly the aircraft. CLICK HERE TO WATCH THE VIDEO

© UK Crown copyright 2008

Facebooktwitterpinterestlinkedinmail

Why not fly NUCLEAR AIRCRAFT ?

I was reading a gripping blog in French called “Objets du ciel » (broken link) when I bumped into an amazing article written by Carl Conrad. I first thought that this post was unbelievable. I daresay that all the articles he writes are amazing. I am going to report hereafter what I have read about this topic – nuclear-powered aircraft – from different sources, but Carl Conrad’s article is the one that inspired me most.

Convair NB-36H X-6

© Photo: National museum of the USAF

As a major oil crisis is looming, airlines are cancelling some less financially viable air links of theirs. The future of aviation as we currently know it, seems to be in jeopardy. Nothing seems to be used as a substitute for any current kind of energy, not even electricity. What about nuclear-powered engines?

Nowadays, nobody would bear any nuclear-powered test flights. However those tests did occur within a USAF-carried-out weapons system (WS 125-A) nuclear-powered bomber aircraft programme. Those tests were performed with a 1,000-kilowatt-nuclear jet engine airborne on a Convair NB-36H. This aircraft named « The Crusader », took-off 47 times during the 50s. The engine was not used for propelling. It only worked at an altitude which was deemed sensible. Those tests allowed to assess the nuclear engine drive performance. Every flight would involve troops deployment in the area to prevent as soon as possible from any accident fallout spreading. The aircraft was modified in order to enhance the five crew member’s safety. The USAF considered the concept not realistic and gave the programme up in late 1956.

However, this technology might be coming back to fly some drones for long-lasting flights. People might be relunctant to see nuclear-powered drones taking-off and flying past over their heads. Who knows? Maybe some day.

Another project to mention: Project Orion should have become a 4,000-ton, long-range spacecraft powered by controlled nuclear pulses, or explosions. For this purpose, a small test vehicle was built. It was dubbed « Hot Rod », and was conventional-explosive-powered craft. Finally, Orion was cancelled in 1965 because it would not have been politically correct and because of technical challenges.

I have not found a piece of information about nuclear-powered craft after the year 2004. By the way, if someone knows further information about nuclear-powered aircraft, they will be welcome if they want to add some comments.

SPECIFICATIONS:
Span: 230 ft. 0 in.
Length: 162 ft. 1 in. (as B-36H, the NB-36H was slightly shorter)
Height: 46 ft. 8 in.
Weight: 357,500 lbs. (max. gross weight)
Armament: None
Engines: Six Pratt & Whitney R-4360-53 radials of 3,800 hp each (takeoff power) and four General Electric J47-GE-19 turbojets of 5,200 lbs. thrust each
Crew: Five ( pilot, copilot, flight engineer and two nuclear engineers)

PERFORMANCE:
Maximum speed: Approx. 420 mph at 47,000 ft.
Cruising speed: 235 mph
Service ceiling: Approx. 47,000 ft.

Sources:
http://www.nationalmuseum.af.mil/

Facebooktwitterpinterestlinkedinmail