Charles « Chuck » YEAGER – 71 years ago !

THE RIGHT STUFF  / L’ETOFFE des HEROS

Supersonic aircraft X-1 in flight
Photo: NASA

Captain Charles « Chuck » YEAGER broke the sound barrier with the help of his friend Jack RIDLEY on a 14th of October 1947 – He did it 71 years ago!

Brigadier General Charles Chuck Yeager next to his X-1 aircraft

(U. S. Air Force illustration/Mike Carabajal)

Supersonic aircraft X-1
Photo: NASA

Supersonic aircraft X-1 pre-flight inspection

Photo: U.S.Air Force Link

XLR-11 ROCKET POWERED AIRCRAFT

Birth of Manned Rocket Research Airplanes: 1946 to 1975

The first reliable, effective rocket engine that would provide boost for experimental research aircraft was produced by four members of the American Rocket Society (ARS) who combined forces to form Reaction Motors Incorporated (RMI) (Rockaway, New Jersey) for developing the Experimental Liquid Rocket (XLR-11) rocket motor. The XLR-11 engine had four separate rocket chambers. Each chamber provided 1500 lb of rated thrust and could be operated independently as a means of throttling thrust in quarters, up to 6000 pounds. The XLR-11 possessed remarkable longevity, powering an impressive fleet of rocket aircraft for more than a quarter of a century (1946 to 1975). This fleet of vehicles were the first rocket aircraft devoted solely to high performance experimental flight research. They were not constrained by military or commercial demands and ranged from being the first to break the sound barrier (XS-1), to the first to reach Mach 2.0 (D-558-II [fig. 5]), to the first to exceed the X-2 Mach 3.2 record (X-15 with two XLR-11 engines).

D-558-II airplane on Rogers lakebed

Figure 5. The D-558-II airplane on Rogers lakebed.

The X-1E – Early Development of Energy Management

Design efforts to extend aircraft performance produced increased wing loadings, W/S, and decreased lift-to-drag ratios, L/D. These design changes were beneficial in reducing drag to achieve supersonic and hypersonic speeds, but were also detrimental in that they reduced the area of the maneuvering footprint and presented difficulties in the approach and landing.

As L/D values decreased, the glide slope angle and the rate of descent increased, making it more difficult for pilots to estimate distances and times required for acceptable landings. The X-1E (fig. 6) was modified with a low-aspect-ratio wing having a thickness-to-chord ratio of four percent – the only aircraft of the X-1/D-558 series to have sufficiently low L/D values to require unique energy management techniques. This X-1E was the first to experiment with approach patterns designed to give
the pilot more time in the traffic pattern to manage energy.

The landing pattern was approached in a conventional manner except that altitudes and speeds were somewhat higher than for
powered aircraft. The initial reference point was established at 12,000 ft (mean sea level) on a downwind heading (180 deg remaining to turn). The downwind leg was offset some four miles from the centerline of the landing runway. On downwind, abeam the touchdown point, landing gear and partial flaps were deployed at a speed of 240 knots. Full flaps were usually deployed on the final approach. At the initial reference point the pilot had almost three minutes until touchdown – additional time for handling increased speeds and sink rates.7,8

X-1 supersonic aircraft on Lakebed

Figure 6. The X-1E airplane on Rogers lakebed.

X-1E supersonic aircraft under B-29 Mothership

Secret declassified USAF pilot Charles Chuck Yeager after breaking the sound barrier on X-1

Report from www.archives.gov

X-1 supersonic aircraft instrument panel

(Text from the NASA at: http://www.nasa.gov/centers/dryden/home/index.html)

Facebooktwitterlinkedinmail

WING LIFT THEORY SHAKEN – LA THÉORIE DE LA PORTANCE DE L’AILE ÉBRANLÉE

I had already written about that in my book UNE AUTRE HISTOIRE DE L’AVIATION, on pages 12; 13; 71; and others – Bernoulli’s principle does not explain everything. We know that aircraft fly. Strange as it may seem, Bernoulli’s principle has often been taught for decades as the explanation of the phenomenon.

Je l’avais déjà évoqué dans mon livre « Une autre histoire de l’aviation » aux pages 12, 13, 71, et d’autres: Le théorème de Bernoulli n’explique pas tout. Nous savons que les avions volent. Depuis des décennies, aussi bizarre que cela puisse paraître, on enseigne souvent le théorème de Bernoulli comme l’explication principale au phénomène.

This explanation would make sense if the air particles split at the leading edge of the wing and come together at the trailing edge. However, Cambridge researchers had debunked this flying myth in 2012, and have recently confirmed that Bernoulli’s principle cannot explain everything in wing lift. As you can see on the video above, the upper wing air stream travels much faster than the lower wing one. Last but not least, these air streams do not come together at the trailing edge since the upper wing air stream reaches the trailing edge well before the lower wing airflow. Isn’t this amazing?

Cette explication tiendrait si les particules d’air se séparaient au bord d’attaque de l’aile et se rejoignaient au bord de fuite. Cependant, des chercheurs de Cambridge avaient démonté ce mythe du vol en 2012 et viennent de confirmer que le principe de de Bernoulli ne peut pas tout expliquer dans la portance de l’aile. Comme vous pouvez le voir sur la vidéo ci-dessus, le flux d’air en extrados voyage beaucoup plus vite que celui d’intrados. Enfin et surtout, ces flux d’air ne se rejoignent pas au bord de fuite puisque le flux d’air d’extrados atteint le bord de fuite bien avant le flux d’intrados. Étonnant, n’est-ce pas?

Facebooktwitterlinkedinmail

SKYDIVER Felix BAUMGARTNER’s TOP 5 JUMPS

Felix Baumgartner, the famous Austrian skydiver, is still waiting for better meteorological conditions to make a new attempt in the Red Bull Stratos project to break the sound barrier while freefalling. This new feat might happen within the next few days as it has already been scheduled on October 14.

According to the video below, Felix BAUMGARTNER’s top 5 jumps are:

  1. Wingsuit Channel Crossing
  2. Taipei 101 BASE Jump
  3. Petronas Towers BASE Jump
  4. Seating of the Spirits Cave Jump
  5. Man vs. Plane

 


Felix BAUMGARTNER was to jump on the 9th of October 2012. However, this jump which could have become the highest skydive in the aerospace history has been put off due to gusty winds.

In this new record attempt Felix BAUMGARTNER will be so high up – 120,000 ft, or 36.6 km – that if his suit leaks, his blood will boil. When he jumps, he will fall so fast that he will break the sound barrier as explained in this video:

 

 

A 3-hour ascent is expected to reach such an altitude, and it could take him more than a quarter of an hour to fall down back to the earth, and land… And now the animation on how it could unfold from the stratosphere right over Roswell, New Mexico, USA: (Click on the link below – MUST SEE!)

 

http://www.redbullstratos.com/gallery/?mediaId=media1859674064001

 

 

GO FELIX!

 

Facebooktwitterlinkedinmail

Future Airbus Aircraft Concept

This is what the next Airbus aircraft should be in the 40 years to come. The new Airbus concept is to match the passengers’ demand.

According to a consultation with the customers, 96% of them want more environmentally sustainable aeroplanes. The aircraft of the future will have to be fully recyclable, more sustainable ie eco-efficient, and less stressful:

Now, the leading aircraft manufacturer is using the feedback to paint its vision of sustainable aviation in 2050.

Airbus had unveiled a revolutionary concept cabin through images of a transparent airliner design, last year.

There is a need among the passengers to reduce the time spent in airports. The new Airbus concept cabin will integrate an additional door for faster boarding, and exit. This airliner of the future will reduce its noise, and carbon emmissions. It will use the latest technologies – bionic structure, blended airframe, enhanced laminar flow and noise reduction; blended U-tail, biomorphing seats able to collect the passenger’s body energy, cutting-edge relaxation systems, human body thermal recycling, dramatic panoramic view, World Wide Web access, round of golf, etc. Watch the video:

Facebooktwitterlinkedinmail

SOLUTIONS TO SAVE JET FUEL

NASA Langley Research Center in Hampton, Virginia – New energy-efficient airplanes could be designed. Researchers work on designs for viable commercial aircraft which could leave a low to zero carbon footprint.

In order to save jet fuel, they look at new concepts, processes, and designs that could be lighter. They try to reduce drag, and they try to increase the propulsive efficiency. For this purpose, they try to get rid of metallic airframes, and parts as often as possible.

For instance NASA has a newer composite 10 percent lighter than carbon fiber composite. This advanced material is called « Pultruded rod stitched efficient unitized structure » or PRSEUS.

The new sleeker designs look like large wings without any traditional tube-shaped fuselage in the central part since it is blended with the wings. These futuristic designs are more fuel efficient as the more lift the plane has, the less it consumes fuel.

The researchers also look at new energy sources as it is showed in this video, and in the end there is further information about the NextGen project which could save fuel too, thanks to this new form of air traffic management:

 

Facebooktwitterlinkedinmail