SR-71 Blackbird

us_flag (Text and photos: NASA courtesy)

Two SR-71 aircraft were used by NASA as testbeds for high-speed, high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft were based at NASA’s Dryden Flight Research Center, Edwards, Calif. They have been loaned to NASA by the U.S. Air Force. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world’s fastest and highest-flying production aircraft.

SR-71 flying over snowy mountains

The aircraft can fly more than 2200 miles per hour (Mach 3+ or more than three times the speed of sound) and at altitudes of over 85,000 feet. This operating environment makes the aircraft excellent platforms to carry out research and experiments in a variety of areas – aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies and sonic boom characterization.

Data from the SR-71 high-speed research program may be used to aid designers of future supersonic/hypersonic aircraft and propulsion systems, including a high-speed civil transport. The SR-71 program at Dryden was part of NASA’s overall high-speed aeronautical research program, and projects involve other NASA research centers, other government agencies, universities and commercial firms.

Research at Mach 3

One of the first major experiments to be flown in the NASA SR-71 program was a laser air-data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data such as angle of attack and sideslip normally obtained with small tubes and vanes extending into the air stream or from tubes with flush openings on an aircraft’s outer skin. The flights provided information on the presence of atmospheric particles at altitudes of 80,000 feet and above where future hypersonic aircraft will be operating. The system used six sheets of laser light projected from the bottom of the « A » model. As microscopic-size atmospheric particles passed between the two beams, direction and speed were measured and processed into standard speed and attitude references. An earlier laser air data collection system was successfully tested at Dryden on an F-l04 testbed.

The first of a series of flights using the SR-71 as a science camera platform for NASA’s Jet Propulsion Laboratory, Pasadena, Calif., was flown in March 1993. From the nosebay of the aircraft, an upward-looking ultraviolet video camera studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. The SR-71 has also been used in a project for researchers at the University of California-Los Angeles (UCLA) who were investigating the use of charged chlorine atoms to protect and rebuild the ozone layer.

Front view of parked SR-71

In addition to observing celestial objects in the various wavelengths, future missions could include « downward » looking instruments to study rocket engine exhaust plumes, volcano plumes and the Earth’s atmosphere, as part of the scientific effort to reduce pollution and protect the ozone layer.

The SR-71, operating as a testbed, also has been used to assist in the development of a commercial satellite-based, instant wireless personal comunications network, called the IRIDIUM system, under NASA’s commercialization assistance program. The IRIDIUM system was being developed by Motorola’s Satellite Communications Division. During the development tests, the SR-71 acted as a « surrogate satellite » for transmitters and receivers on the ground. The SR-71 also has been used in a program to study ways of reducing sonic boom overpressures that are heard on the ground much like sharp thunderclaps when an aircraft exceeds the speed of sound. Data from the study could eventually lead to aircraft designs that would reduce the « peak » of sonic booms and minimize the startle affect they produce on the ground.

Instruments at precise locations on the ground record the sonic booms as the aircraft passes overhead at known altitudes and speeds. An F-16XL aircraft was also used in the study. It was flown behind the SR-71, probing the near-field shockwave while instrumentation recorded the pressures and other atmospheric parameters.

SR-71 takeoff

In November 1998 the SR-71 completed the NASA/Lockheed Martin Linear Aerospike SR-71 experiment (LASRE). LASRE was a small, half-span model of a lifting body with eight thrust cells of an aerospike engine, mounted on the back of an SR-71 aircraft and operating like a kind of « flying wind tunnel. » During seven flights, the experiment gained information that may help Lockheed Martin predict how operation of aerospike engines at altitude will affect vehicle aerodynamics of a future reusable launch vehicle.

Dryden’s Mach 3 History

Dryden has a decade of past experience at sustained speeds above Mach 3. Two YF-12 aircraft were flown at the facility between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high speed, high-altitude flight. The YF-12s were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft.

Research information from the YF-12 program was used to validate analytical theories and wind-tunnel test techniques to help improve the design and performance of future military and civil aircraft. The American supersonic transport project of the late 1960s and early 1970s would have benefited greatly from YF-12 research data. The aircraft were a YF-12A (tail #935) and a YF-12C (tail #937). Tail number 937 was actually an SR-71 that was called a YF-12C for security reasons. These aircraft logged a combined total of 242 flights during the program. A third aircraft, a YF-12A (tail #936), was flown by Air Force crews early in the program. It was lost because of an inflight fire in June l971. The crew was not hurt.

SR-71 flying at sunset

The YF-12s were used for a wide range of experiments and research. Among the areas investigated were aerodynamic loads, aerodynamic drag and skin friction, heat transfer, thermal stresses, airframe and propulsion system interactions, inlet control systems, high-altitude turbulence, boundary layer flow, landing gear dynamics, measurement of engine effluents for pollution studies, noise measurements and evaluation of a maintenance monitoring and recording system. On many YF-12 flights medical researchers obtained information on the physiological and biomedical aspects of crews flying at sustained high speeds.

From February 1972 until July 1973, a YF-12A was used for heat loads testing in Dryden’s High Temperature Loads Laboratory (now the Thermostructures Research Facility). The data helped improve theoretical prediction methods and computer models of that era dealing with structural loads, materials and heat distribution at up to 800 degrees (F), the same surface temperatures reached during sustained speeds of Mach 3.

SR-71 Specifications and Performance

The SR-71 was designed and built by the Lockheed Skunk Works, now the Lockheed Martin Skunk Works. SR-71s are powered by two Pratt and Whitney J-58 axial-flow turbojets with afterburners, each producing 32,500 pounds of thrust. Studies have shown that less than 20 percent of the total thrust used to fly at Mach 3 is produced by the basic engine itself. The balance of the total thrust is produced by the unique design of the engine inlet and « moveable spike » system at the front of the engine nacelles and by the ejector nozzles at the exhaust which burn air compressed in the engine bypass system.

Speed of the aircraft is announced as Mach 3.2 – more than 2000 miles per hour (3218.68 kilometers per hour). They have an unrefueled range of more than 2000 miles (3218.68 kilometers) and fly at altitudes of over 85,000 feet (25908 meters).

As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees (F). The aircraft are 107.4 feet (32.73 meters) long, have a wing span of 55.6 feet (16.94 meters, and are l8.5 feet (5.63 meters) high (ground to the top of the rudders when parked). Gross takeoff weight is about 140,000 pounds (52253.83 kilograms), including a fuel weight of 80,000 pounds (29859.33 kilograms).

The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces above each engine nacelle, ailerons on the outer wings and elevators on the trailing edges between the engine exhaust nozzles.

SR-71 3-view drawing

The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 64-17980, manufactured in July 1967, and NASA 831 (B model), military serial 64-17956, manufactured in September 1965. From 1991 through 1994, Dryden also had another « A » model, NASA 832, military serial 64-17971, manufactured in October 1966. This aircraft was returned to the USAF inventory and was the first aircraft reactivated for USAF reconnaissance purposes in 1995.

The SR-71 last flight took place in October 1999.

Development History

The SR-71 was designed by a team of Lockheed personnel led by Clarence « Kelly » Johnson, at that time vice president of the Lockheed’s Advanced Development Company, commonly known as the « Skunk Works. »

The basic design of the SR-71 and YF-12 aircraft originated in secrecy in the late l950s with the aircraft designation of A-11. Its existence was publicly announced by President Lyndon Johnson on Feb. 29, 1964, when he announced that an A-11 had flown at sustained speeds of over 2000 miles per hour during tests at Edwards Air Force Base, Calif.

Development of the SR-71s from the A-11 design, as strategic reconnaissance aircraft, began in February 1963. First flight of an SR-71 was on Dec. 22, 1964.

Source: http://www.nasa.gov/centers/dryden/news/FactSheets/FS-030-DFRC.html

Facebooktwitterlinkedinmail

Depot Efforts Continue to Keep T-38s Flying

USAF T-38 Trainer Aircraft

The T-38 Talon is a twin-engine, high-altitude, supersonic jet trainer. It is used primarily in Air Education and Training Command for undergraduate pilot and pilot instructor training. (U.S. Air Force photo by Staff Sgt. Steve Thurow)

AIR FORCE LINK Courtesy
by Wayne Crenshaw
78th Air Base Wing Public Affairs

10/20/2008 – ROBINS AIR FORCE BASE, Ga. (AFNS)

Members of the 573rd Commodities Maintenance Squadron here continue to put in long hours to make sure Air Force pilot training doesn’t come to a halt.

Many members of the squadron have been working 10-hour days, seven days a week to make a new aileron actuator lever for the T-38 Talon used to train pilots. A T-38 crashed in April, killing the instructor and student. A faulty aileron lever was declared a contributing factor in the crash. The problem threatened to ground all T-38s, but officials at Warner Robins Air Logistics Center and at Air Force Materiel Command’s two other depots, Hill AFB, Utah, and Tinker AFB, Okla., took on the task of developing a replacement lever. While about 32 people have hands-on involvement in the lever work at Robins AFB, the importance of the work results in the squadron participating in weekly, worldwide conference calls to update progress of the work. Tommy Hunnicutt, deputy director of the 573rd CMMXS, said he expects the squadron personnel to boost their output to 75 levers per week, which would put completion of the contract at about Nov. 14. That would be well ahead of the original completion date of Dec. 26.

Mr. Hunnicutt said that initially Robins AFB was not in the repair picture. However, the other two depots had problems getting their prototypes approved for the item that requires precise, intricate milling. That raised concerns about how long the fix could take, Mr. Hunnicutt said, and that’s when the 573rd CMMXS got the call. After getting the contract July 30, squadron engineers got a prototype approved Aug. 25 with relative ease. Unit personnel are now producing 50 levers per week. The contract calls for the squadron to produce 250 left hand levers and 250 right hand levers. The levers control the ailerons, which are located on the rear of each wing and are used to control the aircraft during a turn.

Due to the age of the T-38, the original aluminum forgings used to make the levers are no longer available, which is why the parts had to be manufactured from scratch.

Air Force officials currently operate 546 T-38s, a twin-engine jet that serves as the primary trainer for Air Force pilots. It also has the same basic airframe as the F-5 Freedom Fighter, and Mr. Hunnicutt said the F-5 aileron levers also will be replaced.

Facebooktwitterlinkedinmail

RAFALE evaluation in SWITZERLAND

French Air Force RAFALE fighter aircraft takeoff

The next aircraft (the last one was the Gripen) being evaluated in the framework of the replacement of the Swiss F-5, is the Dassault-Aviation-manufactured RAFALE until November 7. Two two-seaters stationed at Emmen airfield – Switzerland – are being tested the same way the two Swedish Gripens were tested previously.

Latest Dassault Aviation creation, the RAFALE performed its maiden flight on July 4, 1986! Its program highlighted all the major French suppliers such as: SNECMA for the M88 engine; Thales (former Thomson – CSF) for the RBE-2 phased array radar; Dassault systems; SAGEM (electronics and optronics); and the English Messier – Dowty for the landing gear.

Unlike the Mirage 2000 which versus its American competitors, the RAFALE does not fear its opponents as far as technical performance is concerned:

  • RBE-2 phased array radar
  • Latest generation SPECTRA (electronic warfare system)
  • OSF (Front-sector optronic system)
  • a GPS (Global Positioning System)
  • last but not least: a lower cost of development and maintenance compared to the majority of its opponents…

The RAFALE has a wide range of weapons at its disposal: the infrared and radar MICA missile, the SCALP (air-to-surface cruise missile) as well as the future long-range European METEOR missile. The multirole Dassault fighter aircraft is able to be equipped with various American-made bombs: Laser-guided Paveway III, for instance, but it is a shame that foreign weapons have not been licensed for the RAFALE yet.

The RAFALE fighter aircraft are parted into three standards:

  • F1 standard: air-to-air-mission dedicated only. This standard fields the French Fleet Air Arm.
  • F2 standard: encompasses the F1 standard, and has the air-to-surface capability to its disposal. The French Air Force is fielded with these aircraft.
  • F3 standard encompasses the previous skills plus the strategic capability which enables this fighter to carry out nuclear-deterrence/strike missions, reconnaissance missions, and anti-ship-strike missions. This latter standard might field the Swiss Air Force (without the nuclear and anti-ship capabilities)

SOURCE :

AVIANEWS Article

Photos 1 & 2 French Air Force, Rafale 5/330 Squadron Côte-D’argent at Dijon.

Photo 3 Pascal Kümmerling, Rafale of the 5/330 at Geneva during BEX meeting in 2007.

Bern, 09th of October 2008 – Photo: Pascal Kümmerling – The second applicant to the replacement of the Tigers ( TTE ) landing at Emmen. The French RAFALE has already started the second TTE in-flight and ground-test series in Switzerland. The European EADS Eurofighter third and last applicant will follow in November.

About thirty flights are scheduled among which some night flights for the tests at Emmen. Around 50 sorties will be needed. They will be carried out by F/A-18s, and F-5s in order to make up the targets (means playing the role of targets) and the formation flying tests. The assessment flights occur within the frame of the flights share, which means that there should not be any increase in the number of sorties on the airfields that are concerned.

The sequel: The arrival of the European EADS Eurofighter is expected on November 6, 2008. The testing syllabus is the same for the three fighter aircraft.

The flight and ground tests will be examined as well as the tenders that were handed in on July 2nd, 2008. The collected data will be used as a basis for a second call for tenders in January 2009.

The choice of the type of aircraft should come after the evaluation of the second tender, assessing equipment and price, and when everything has been put down on a balance-sheet report expected in May 2009. Then the choice should be stated in July 2009.

These aircraft belong to the 1/7 « Provence » Fighter Squadron stationed at Saint Dizier – Robinson. The « Provence » was the first squadron that had been operational with the RAFALE. The first 1/7 RAFALE flight happened in 2006. Photos: Pascal Kümmerling.

VERY SPECIAL THANKS to Pascal Kümmerling since this post is adapted from his articles on his blog called AVIA NEWS: http://psk.blog.24heures.ch/

Facebooktwitterlinkedinmail