PLS 2222
Cours d’anglais aéronautique sur FCL ANGLAIS
Foreign Object Damage (FOD) can be caused by Foreign Object Debris (called FOD too). FOD can also mean « Foreign Object Detection« . Watch the video, and read its transcript below:
Our Air Force has the most technically advanced aircraft in the world – deadly fighters, and bombers, mighty cargo and tanker workhorses, our many helicopters, and a variety of specialty aircraft.
But they can all be easily grounded by FOD.
Foreign objects cause damage to our aircraft in many ways. For example, cut tires, and jammed flight or engine controls. FOD has caused at least six fighter aircraft to crash over the last twelve years! Some of the items that caused these mishaps were:
These incidents show that poor housekeeping, and work practices are still the two major contributors to preventable FOD. We can eliminate FOD. To do so, we must make these six commonsense steps, part of our every job, every step, every day.
For tight or inaccessible access areas, you can also use a borescope, or X-ray equipment to locate lost items. How would you tell the pilot if the jet has just taxied? What if it is flying? A file about this size was left behind after blending two engine blades on a C-5, possibly fallen behind a nacelle blocker door*** during the job. Four people then signed for the box over the next several days before someone finally noticed, and reported the last tool. The file was not located, and then came loose in flight the next day. This incident caused over 550 men-hours of work, and $ 66,000 in damage to the engine. Hardware control is simply taking only what you need, and counting how many nuts, bolts, or other hardware you take from bench stock. After the job, make sure you account for all the hardware. If you don’t complete the job, annotate the screw bag with the quantity, the type of hardware, and your name. This will help the person who finishes the job track down any missing hardware. Here is what a misplaced ¼ inch nut did to a C-130 engine. Over 30 blades were damaged beyond repair, not counting depot costs – the damages have already taken 64 man-hours, and exceeded $ 38,000 in damages. Sometimes, we accidentally leave items inside the intake danger area, or in the intake before an engine start. These have included VTR tapes, flashlights, cleaning bottles, and aircraft forms. Are you paying attention? Or have you just been lucky?
6. Step six (again and further) – Follow the T.O.. Several times we have had equipment, and panels come off during an engine run, or in flight, causing serious damage. On the last job before a three-day weekend, an experienced crew chief and his assistant were preparing an F-16 for an engine run. He skipped the warning, and the step to check the run screen safety pin for security. During the engine run, one pin came out, and after whipping around in the intake for a few seconds, the lanyard broke. The pin destroyed over 426 blades. Total cost – $ 69,000 and 366 man-hours. What was the cost of the crew chief? How do you think he felt? Think of what he went through. The de-certification, the investigation, the waiting. Was the two or three seconds saved worth it? Sometimes, confusing or incomplete TOs are part of the problem. Improper installation caused by poor tech aide, and inexperience created a stress crack in the upper anti collision light lens in a KC-10.
* T.O.: Technical Order
** (or boroscope)
*** Thrust reverser (pelle d’inverseur de poussée)
Watch, and read the transcript below:
In this tutorial, we will explore the foremost common classifications of fire extinguishers.
The first, and most common type of extinguisher is used for a Class A fire. These are fires fueled by ordinary combustible materials such as paper, wood, carbon, most plastics. The Class A fire extinguisher uses the water to smother the fire.
Class B fires are fueled by flammable liquids such as gasoline, kerosene, grease, and oil. Remember this classification extinguisher – think « B » for Boil, or oil. Class B extinguishers typically use liquid foam agent to smother the fire. You never want to use water on a Class B fire, as the water can cause the flammable liquids to spread like we accidentally drip water on a frying pan, and the grease pops, and in boiling liquid into the air.
Class C fires are fueled by electrical current traveling to wires, circuits, and outlets. Class C extinguishers most commonly use a dry chemical powder to smother the fire. In more sensitive environments such as a recording studio, a Class C extinguisher may use a halon gas that does not leave a residue. These are often referred to as clean agents. You would also never want to use water on a Class C fire for obvious reasons.
Most household extinguishers are a combination of Class A, B, and C ratings. These extinguishers can be used on ordinary combustible fires, liquid fires, and electrical fires.
The last of the four common classifications of fire is the Class D fire. The Class D fires fueled by combustible metals such as magnesium, potassium, and sodium. Class D fire extinguishers are used exclusively for Class D fires, and use materials such as sand, and dry chemical powders to smother the fire.
Special thanks to RVTCDEN who shared this video on Youtube.
And… Thank you Vince for your help! 😉
…
Cours d’anglais aéronautique sur FCL ANGLAIS
Some pilots experienced very difficult conditions at Bilbao Airport a few days ago as strong crosswinds – up to 60 miles per hour – swept the runway from starboard (in French: tribord) ie from their right handside, forcing several of them to go around (in French: remettre les gaz):
Thanks to the new Twitter technology, we can now embed some Twitter posts. A great aviation history’s tweep – @OlePrimdahl – pays tribute to both the Russian Airborne Early Warning and Control (AEW&C) Tupolev Tu-126 Moss (January 23, 1962), and the famous French Blériot XI (January 23, 1909) flown by Louis Blériot to cross the Channel for the first time ie 6 months later:
#Onthisday in #aviation #history: First flight of the Tupolev Tu-126 « Moss » AEW & C aircraft in 1962. bit.ly/xw7toq
— Ole Primdahl (@OlePrimdahl) January 23, 2012
#Onthisday in #aviation #history: First flight of the Blériot XI light monoplane aircraft in 1909. bit.ly/xWjfA0
— Ole Primdahl (@OlePrimdahl) January 23, 2012